

Soft and Dry Phantom Modeling Material Using Silicone Rubber with Carbon Fiber

Yoshio Nikawa, *Member, IEEE*, Masaru Chino, and Kazuo Kikuchi, *Member, IEEE*

Abstract—New phantom models that can simulate the effect of electromagnetic waves on human tissues have been developed. These phantom models can be designed to fit a wide range of complex permittivities by using two types of carbon fiber within a silicone rubber base. Tissues with low water content, such as fat and bone, and tissues with high water content, such as skin and muscle, can both be modeled using the phantom models discussed in this paper. When using conventional phantom model materials, care must be taken to prevent decomposition and dehydration during storage. The materials used for these new phantom models do not dry out and can be used repeatedly with reliable results.

I. INTRODUCTION

IN the past few years, studying the effects of hazardous EM radiation on biological systems has become increasingly important [1], [2]. To study the effects of electromagnetic (EM) fields on biological systems, the development of phantom models has evolved. Phantom models are used to simulate EM wave distributions inside a human body. These models are also useful for the development of RF and microwave hyperthermia equipment used to estimate the specific absorption rate (SAR) in human tissue for the treatment of cancer [3]. In this application, the SAR of a material is measured as an absorption rate, in terms of power per unit mass in a heated medium.

Traditionally, phantom models have been widely used to simulate tissues with high water content [4], [5]. These compounds were generally constructed in one of two ways: the first consisted of a jelly agent, polyethylene powder, sodium chloride and water; and the second consisted of agar, sodium chloride and water. The disadvantage of constructing phantom models using these materials is that the models cannot be used repeatedly since they dry out and decompose over time. To avoid this, nonhydrated phantom models made of ceramic [6] were developed to simulate muscle tissue. However, these models required the use of a special adhesive made with ceramic powder whose function was to remove any air gaps between adjacent pieces of ceramic. Unfortunately, the adhesive was difficult to use and the hard ceramic material could not be cut or reshaped easily.

In order to overcome the shortcomings of traditional phantom models, flexible nonhydrated phantom models have been developed. These new models are made of materials composed of silicone rubber and carbon fiber compounds. The complex

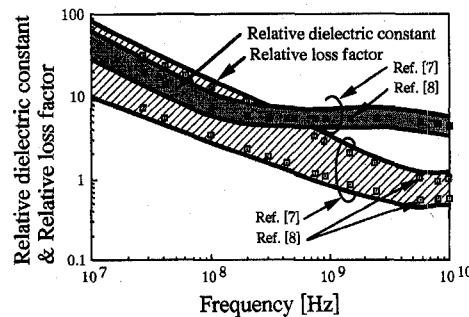


Fig. 1. The relative dielectric constant and the loss factor versus frequency of the tissues of low water content by referring [7] and [8].

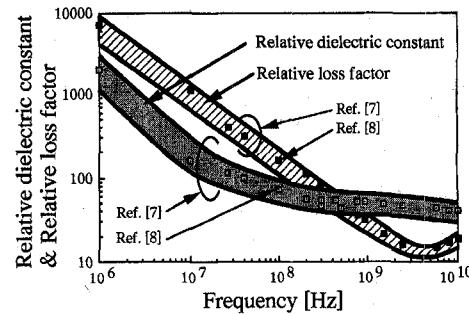


Fig. 2. The relative dielectric constant and the loss factor versus frequency of the tissues of high water content by referring [7] and [8].

permittivity of the phantom models developed using these materials can be controlled by adjusting the composition ratio to simulate high water and low water content of various human tissues.

II. PHANTOM MODELS

The dielectric properties of biological substances is shown in [7] and [8]. Human tissues are categorized as one of two types depending on their water content. Skin and muscle have a high water content, whereas fat and bone have a lower water content. As a result, each tissue has a different relative dielectric constant and loss factor as shown in Figs. 1 and 2. The upper and the lower bands represent the maximum and the minimum values tabulated from [7]. The open and closed squares represent the raw data points given for low and high water content as specified in [8]. Figs. 1 and 2 indicate that the permittivity of tissues with a high water content is about ten times greater than that of tissues with a low water content. This

Manuscript received October 27, 1995; revised April 12, 1996.

The authors are with the Department of Communication Engineering, School of Electrical Engineering, National Defense Academy, Yokosuka, 239 Japan.

Publisher Item Identifier S 0018-9480(96)07038-X.

TABLE I
THE CHARACTERISTICS OF THE CARBON FIBERS

fiber type	length	diameter	DC resistance
A	3.0 mm	9 μm	$1.5 \times 10^{-3} \Omega\cdot\text{cm}$
B	0.7 mm	13 μm	$1.0 \times 10^{-6} \Omega\cdot\text{cm}$

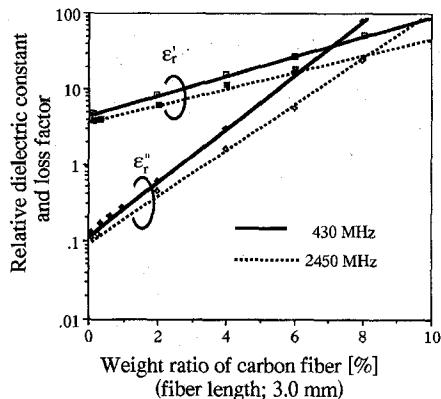


Fig. 3. Complex permittivity versus weight ratio of carbon fiber type A in silicone rubber.

Fig. 4. Complex permittivity versus weight ratio of carbon fiber type B in silicone rubber.

characteristic makes it difficult to develop phantom models for various human tissues that are to be tested at many different frequencies.

To realize a wide range of permittivities in a phantom modeling material, this paper examines the use of two types of carbon fiber material dispersed in a silicone rubber base. For simplicity, the characteristics of the carbon fibers are referred to as type A and type B, as shown in Table I.

To make this type of phantom model, raw silicone rubber is first mixed with two types of carbon fiber and a curing agent. Physical samples are then shaped after degassing. The complex permittivity of the sample is then measured by using the reflection method [9], [10]. This process consists of inserting a toroidal-shaped sample into the open end of the coaxial probe. The reflection coefficient of the sample is then measured using a network analyzer, such as the HP8752A. To check the

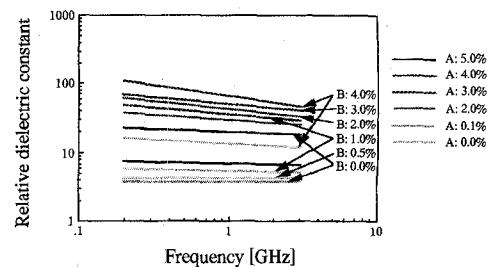


Fig. 5. Relative dielectric constant of the compounded material as a function of the frequency with the weight ratio of the carbon fiber of type A and B taken as the parameter.

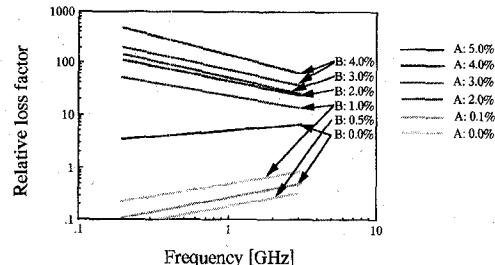


Fig. 6. Relative loss factor of the compounded material as a function of the frequency with the weight ratio of the carbon fiber of type A and B taken as the parameter.

accuracy of the reflection method, the HP85070A dielectric probe was used. Both results agreed within an error of $\pm 5\%$.

Figs. 3 and 4 show the dielectric constant and the loss factor as a function of the weight ratio of the carbon fiber for both the type A and type B compounds at 430 MHz and 2450 MHz. From this data, it is seen that the relative dielectric constant and loss factor increase linearly as a function of carbon fiber weight ratio for both carbon fiber types. Noting this, it is reasoned that a wide range of dielectric constants and loss factors can be obtained by choosing the proper weight ratios for type A and type B in a silicone rubber base.

III. EXPERIMENTAL RESULTS

Figs. 5 and 6 show measured relative dielectric constants and loss factors of the compound materials versus frequency, for various weight ratios. The temperature of the medium was 25.0°C. The experimental results demonstrated that materials with a wide range of complex dielectric constants could be realized by controlling the weight ratios of the two carbon fiber materials.

Figs. 7 and 8 show the loss tangents as a function of relative dielectric constant, at various weight ratios of carbon fiber at 430 MHz and 2450 MHz. From Figs. 5–8, it is derived that a composite material containing 0.5% carbon fiber type A and 0.5% carbon fiber type B by weight is optimum for modeling tissues with a low water content. Using this information, a dry phantom model was constructed for the low water content case. The measured and experimental results of the relative dielectric constant and loss factor are shown in Fig. 9.

Similarly, a composite containing 3.0% carbon fiber type A and 2.0% carbon fiber type B may be ideal to simulate tissues

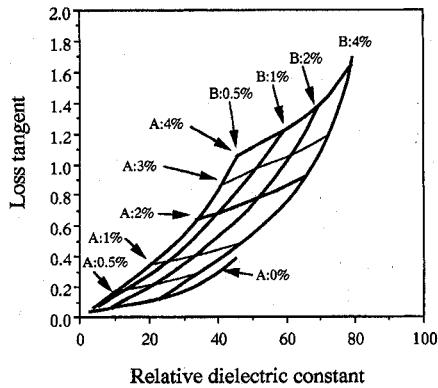


Fig. 7. Loss tangent versus relative dielectric constant of dry phantom model as a parameter of weight ratio of carbon fiber (430 MHz, 25°C).

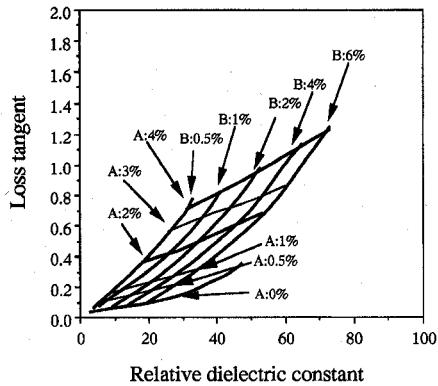


Fig. 8. Loss tangent versus relative dielectric constant of dry phantom model as a parameter of weight ratio of carbon fiber (2450 MHz, 25°C).

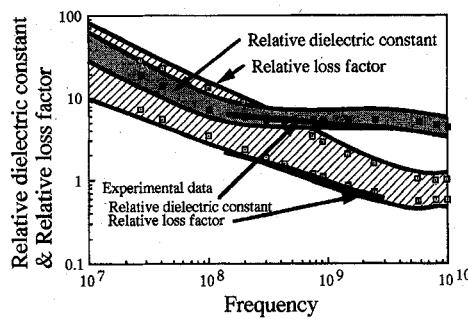


Fig. 9. Experimental value of the relative dielectric constant and the loss factor versus frequency of the dry phantom model with the reported value (model of low water content).

with a high water content. The measured relative dielectric constant and loss factor for this case is shown in Fig. 10.

Using the dry phantom models, the specific absorption rate (SAR) was obtained and compared to a simulated value. The simulated SAR distribution was calculated using the finite difference time domain (FDTD) method [11]–[13] for a TE_{10} waveguide mode at 430 MHz. The test setup for measuring the SAR distribution is shown in Fig. 11. The waveguide applicator is filled with water, with a relative dielectric constant of 78 at 430 MHz. The size of the rectangular waveguide is $100 \times 50 \text{ mm}^2$. To ensure that only the TE_{10} mode is generated

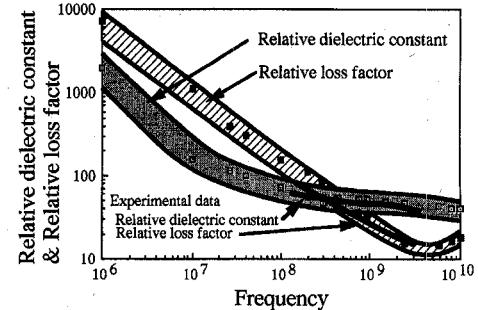


Fig. 10. Experimental value of the relative dielectric constant and the loss factor versus frequency of the dry phantom model with the reported value (model of high water content).

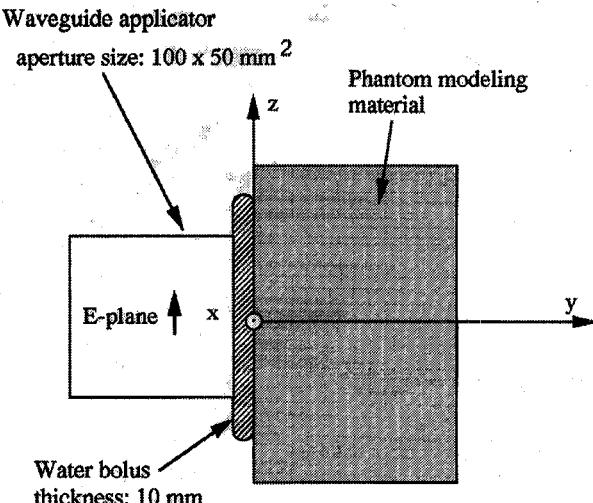


Fig. 11. A coordinate system used to calculate SAR distribution.

at this frequency, a mode-reject filter is inserted in the aperture of the applicator [14]. The applicator is then attached to a 10 mm-thick water bolus. The purpose of the water bolus between the aperture and the model is to provide impedance matching. Additionally the extra length of the bolus allows us to neglect any evanescent mode that may occur in the model near the aperture phantom model interface. Fig. 12 shows the experimental and simulated results of the SAR distribution for the dry phantom model with a high water content. Fig. 13 shows the results for a bilayered tissue model consisting of fat and muscle. In this case, the SAR distribution is obtained using a thermograph camera after 5 minutes of heating at 430 MHz. The results shown in Figs. 12 and 13 show a close agreement between simulated and experimental results. The slight discrepancy in SAR values is probably due to a small amount of heat conduction in the dry phantom model.

IV. CONCLUSION

In this paper, the development and application of dry state phantom models using new compounds has been shown. These new compounds consist of silicone rubber and two types of carbon fiber. By controlling the weight ratios of the carbon fiber materials for a given sample, the electromagnetic response of various human tissues can be accurately simulated.

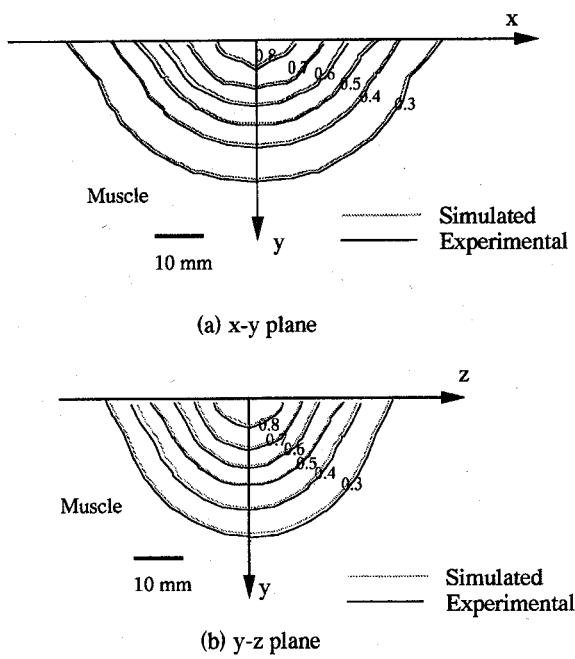


Fig. 12. SAR distribution inside the model of tissues of high water content.

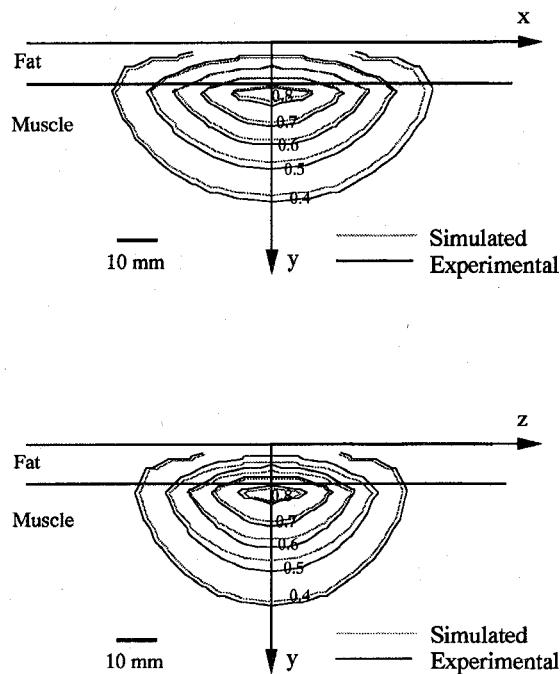


Fig. 13. SAR distribution inside the bilayered tissue model. (Tissue model of low water content of 10 mm thickness is set in between the applicator and the tissue model of high water content.)

In addition, this type of phantom model can be used to accurately simulate any arbitrary tissue or group of tissues by selecting the proper weight ratios of the carbon fibers. By using silicone rubber as the base material of the dry phantom model, it is easy to form or change the shape of the model by simply cutting the material. Also, it is easy to determine the SAR distribution at an arbitrary position inside the model by cutting and then heating the sample. Since the

material is soft, any gap between the sample and probe can be removed by slightly reshaping the sample. Also in the case of inhomogeneous materials, this type of phantom model is better suited to easily remove any air gap between numerous material interfaces. Since the model contains no water, it is very stable over time and requires no special care or maintenance.

ACKNOWLEDGMENT

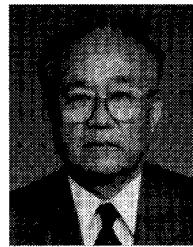
The authors wish to thank K. Cobler of Anritsu Wiltron Company for reviewing the manuscript.

REFERENCES

- [1] C. Silverman, "Epidemic studies of microwave effects," in *Proc. IEEE*, 1980, vol. 68, no. 1, pp. 78-84.
- [2] D. I. Mcree, "Soviet and eastern European research on biological effects of microwave radiation," in *Proc. IEEE*, 1980, vol. 68, no. 1, pp. 84-91.
- [3] M. Kikuchi *et al.*, "Guide to the use of hyperthermia equipment. 2. Microwave heating," *Int. J. Hyperthermia*, vol. 9, no. 3, pp. 341-360.
- [4] A. W. Guy, "Analyzes of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-19, no. 2, pp. 205-214, 1971.
- [5] T. Matsuda, T. Yoshida, T. Arioka, S. Takatsuka, Y. Nikawa, and M. Kikuchi, "Development of 430 MHz microwave heating system by using lens applicator (III)—Characteristics of heating—," *Japan J. Hyperthermic Oncol.*, vol. 4, no. 4, pp. 317-329, 1988.
- [6] T. Kobayashi, T. Nojima, K. Yamada, and S. Uebayashi, "Dry phantom composed of ceramics and its application to SAR estimation," *IEEE Trans. Microwave Theory Tech.*, vol. 41, no. 1, pp. 136-140, 1993.
- [7] M. A. Stuchly and S. S. Stuchly, "Dielectric properties of biological substances—Tabulated," *J. Microwave Power*, vol. 15, no. 1, pp. 19-26, 1989.
- [8] C. C. Johnson and A. W. Guy, "Nonionizing electromagnetic wave effects in biological materials and systems," in *Proc. of the IEEE*, 1972, vol. 60, no. 6, pp. 692-718.
- [9] M. A. Stuchly and S. S. Stuchly, "Coaxial line reflection method for measuring dielectric properties of biological substances at radio and microwave frequencies—A review," *IEEE Trans. Instrum. Meas.*, vol. IM-29, no. 3, pp. 176-182, 1980.
- [10] E. C. Burriette *et al.*, "In vivo probe measurement technique for determining dielectric properties at VHF through microwave frequencies," *IEEE Proc.*, 1981, vol. 128, pt. a, no. 9, pp. 602-606.
- [11] D. M. Sullivan *et al.*, "Use of the finite-difference time-domain method for calculating EM absorption in man models," *IEEE Trans. Biomed. Eng.*, vol. 35, pp. 179-186, Mar. 1988.
- [12] D. M. Sullivan *et al.*, "Use of the finite-difference time-domain method in calculating EM absorption in human tissues," *IEEE Trans. Biomed. Eng.*, vol. 34, pp. 148-157, Feb. 1987.
- [13] Y. Nikawa and M. Yamamoto, "A multielement flexible microstrip patch applicator for microwave hyperthermia," *IEICE Trans.*, vol. E78-B, no. 2, pp. 145-151, Feb. 1995.
- [14] Y. Nikawa, "Temperature depending SAR distribution in human body during hyperthermia treatment," *IEICE Trans.*, vol. E78-C, no. 8, pp. 1063-1070, Aug. 1995.

Yoshio Nikawa (M'88) was born in Tokyo, Japan, in 1958. He received the B.E., M.E., and Ph.D. degrees in electrical engineering from Keio University in Yokohama, Japan in 1981, 1983, and 1986, respectively.

From 1986 to 1987 he was a Research Assistant at the National Defense Academy. From 1987 to 1988 he was a Research Associate at the University of Texas, Austin, TX. He is now an Associate Professor of Electrical Engineering at the National Defense Academy in Japan. His current research interests include microwave measurements and applications and EM-wave heating technique for medical and industrial applications.


Dr. Nikawa is a member of the Institute of Electronics, Information and Communication Engineers (IEICE) of Japan, the Japan Society of Medical Electronics and Biological Engineering, and the Japanese Society of Hyperthermic Oncology.

Masaru Chino was born in Tokyo, Japan on November 6, 1938. He received a B.E. degree from the Kanto Gakuin University, Yokohama-shi, Kanagawa, Japan in 1962.

Since 1963, he has been a Research Associate in the Department of Electrical Engineering at the National Defense Academy in Kanagawa, Japan. His research interest is the fabrication and evaluation of microwave absorbers by the Painting Method.

Mr. Chino is a member of the Institute of Electronics, Information and Communication Engineers (IEICE) of Japan.

Kazuo Kikuchi (M'75) was born in Tokyo, Japan on April 1, 1934. He received a B.E., M.E., and D.E. degrees in Electrical Engineering from Nihon University in 1957, Meiji University in 1959 and Tokyo Institute of Technology in 1981.

Since 1959 he has been with the National Defense Academy. First as an Assistant, then as an Associate Professor, and since 1992 as a Professor of the Department of Electrical Engineering.

Dr. Kikuchi is a member of the Institute of Electronics and Communication Engineering of Japan and the Japan Society of Applied Electronics.